In Vivo Labeling of Serum Albumin for PET.

نویسندگان

  • Gang Niu
  • Lixin Lang
  • Dale O Kiesewetter
  • Ying Ma
  • Zhongchan Sun
  • Ning Guo
  • Jinxia Guo
  • Chenxi Wu
  • Xiaoyuan Chen
چکیده

UNLABELLED The purpose of this study was to develop a novel in vivo albumin-labeling method to allow PET of cardiac function after myocardial infarction and vascular leakage and increased permeability in inflammatory diseases and malignant tumors. METHODS To label albumin in vivo, we synthesized a NOTA (1,4,7-triazacyclononane-N,N',N″-triacetic acid)-conjugated truncated form of Evans blue (NEB). (18)F labeling was achieved by the formation of an (18)F-aluminum fluoride ((18)F-AlF) complex, and (64)Cu labeling was obtained by a standard chelation method. Sixty-minute dynamic PET imaging was performed on normal mice to evaluate the distribution of (18)F-AlF-NEB, which was compared with in vitro-labeled mouse serum albumin ((18)F-fluorobenzyl-MSA). Electrocardiography-gated PET imaging was performed in a mouse model of myocardial infarction. Both dynamic and static PET scans were obtained in a mouse inflammation model induced by local injection of turpentine to evaluate vascular leakage. Tumor permeability was studied by dynamic and late-point static PET using (64)Cu-NEB in a UM-22B xenograft model. RESULTS NEB was successfully synthesized, and (18)F labeling including work-up took about 20-30 min, with a radiochemical purity greater than 95% without the need for high-performance liquid chromatography purification. Most of the radioactivity was retained in the circulation system at 60 min after injection (26.35 ± 1.52 percentage injected dose per gram [%ID/g]). With electrocardiography-gated PET, ventricles of the heart and major arteries were clearly visualized. The myocardial infarction mice showed much lower left ventricular ejection fraction than the control mice. Inflammatory muscles showed significantly higher tracer accumulation than the contralateral healthy ones. UM-22B tumor uptake of (64)Cu-NEB gradually increased with time (5.73 ± 1.11 %ID/g at 1 h and 8.03 ± 0.77 %ID/g at 2 h after injection). CONCLUSION The distribution and local accumulation of serum albumin can be noninvasively visualized and quantified by (18)F-AlF-NEB and (64)Cu-NEB PET. The simple labeling and broad applications make these imaging probes attractive for clinical translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labeling of Human Serum Albumin with Stable Isotope of Bromine; an in Vitro Study

Background: Possibility to trace-label albumin with isotopes results in information concerning its synthesis, breakdown, and distribution in the intra and extra cellular spaces. The iodination of albumin is a widespread procedure used in scientific studies. Bromine not only is more reactive and less expensive than iodine, but bonds more easily with many elements. Therefore, it could be a suitab...

متن کامل

Lyophilized Kit for the Preparation of the PET Perfusion Agent [68Ga]-MAA

Rapid developments in the field of medical imaging have opened new avenues for the use of positron emitting labeled microparticles. The radioisotope used in our research was (68)Ga, which is easy to obtain from a generator and has good nuclear properties for PET imaging. Methods. Commercially available macroaggregated albumin (MAA) microparticles were suspended in sterile saline, centrifuged to...

متن کامل

Conjugation of NODA - GA - T to Sulfo - SMCC – Derivatized Proteins

Although protein-based PET imaging agents are projected to become important tracer molecules in the future, the labeling of complex biomolecules with PET radionuclides is inexpedient and, most of the time, challenging.Methods: Here we present a straightforward labeling chemistry to attach the versatile radionuclide 68Ga to proteins. Introducing the 68Ga chelating agent NODA-GA-T (2,29-(7-(1-car...

متن کامل

Human serum albumin coated iron oxide nanoparticles for efficient cell labeling.

A novel dopamine-plus-HSA (human serum albumin) approach was developed to functionalize iron oxide nanoparticles (IONPs), yielding nanoconjugates that are highly efficient in labeling various types of cell lines, which was demonstrated by in vivo MR imaging on xenograft and focal cerebral ischemia models.

متن کامل

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 55 7  شماره 

صفحات  -

تاریخ انتشار 2014